Siemens Touts 3D Printing For Turbine Emissions Reductions

08 August 2018

Siemens said it has successfully 3D-printed and engine tested a dry low emission (DLE) pre-mixer for the SGT-A05 aeroderivative gas turbine, saying it shows a potential for significant reductions in CO emissions.

“This is another excellent example of how additive manufacturing is revolutionizing our industry, delivering measurable benefits and real value to our customers, particularly as they look to further reduce emissions to meet environmental targets,” said Vladimir Navrotsky, chief technology officer for Siemens Power Generation Services, Distributed Generation. “Our achievements using AM are paving the way for greater agility in the design, manufacturing and maintenance of power generation components.”

From concept to engine test, the development took only seven months, which is impressive for a component that requires such tight tolerances and works in high load and temperature, Siemens said. The DLE pre-mixer is highly complex with over 20 parts involved in the casting and assembly using traditional manufacturing methods. By utilizing Siemens qualified nickel super alloys as the additive manufacturing (AM) printing material, the 3D-printed component requires only two parts and lead time is reduced by approximately 70%. The 3D printing of the DLE pre-mixer allows Siemens to simplify complexity in the production process, reduce external dependencies in the supply chain, and improves the geometry of the component, thus allowing a better fuel-air mix, the company said.

First engine testing of the AM-manufactured DLE pre-mixer, which was 3-D printed in Siemens’ AM center of competence in Finspang, Sweden, was recently completed and the data received is promising. It showed no start issues, all fuel transitions were accomplished successfully without any controls modifications required, there were no combustion dynamics or noise, measurable CO emissions reductions were realized and full power was achieved, according to Siemens.

Siemens said its DLE solution for the SGT-A05 gas turbine reduces emissions through advanced lean burn combustion technology, eliminating the need for water injection. The DLE conversion reduces customers’ operating costs associated with water treatment. Application of DLE does not compromise the high dynamic loading response of this aeroderivative engine model. More than 120 engines are successfully utilizing DLE technology to reduce NOx and CO emissions with 3.9 million operating hours accumulated (as of February 2018).

“And now, with AM technology we have an opportunity to go even further with emissions reduction for DLE combustion,” said Douglas Willham, Siemens director of Engineering for the SGT-A05.

Last year, Siemens finished its first full-load engine tests for gas turbine blades completely designed and produced using AM technology. Earlier this year, the company 3D-printed and installed into customer’s equipment its first replacement part for an industrial steam turbine. In early 2017, Siemens achieved the first successful commercial installation and continuing safe operation of a 3D-printed part in a nuclear power plant – an impeller for a fire protection pump that is in commercial operation. Siemens accumulated more than 30 000 hour of successful commercial operation for SGT-800 burners repaired with AM technology and for SGT-750 burner swirls manufactured by AM. All these combustor components are running in a very high load and temperature environment.

MAGAZINE
NEWSLETTER
Delivered directly to your inbox, Diesel Gas & Turbine News; News features the pick of the breaking news stories, product launches, show reports and more from KHL's world-class editorial team.
Latest News
Australian LNG plant plans announced
Electrified plant would produce LNG marine bunker fuel
Webinar: Learn about future fuels in power generation
Webinar “Future Fuels and their Role in Future-proofing Power Generation” now available on demand
Webinar looks at benefits of renewables, hydrogen in power gen
The role of “future fuels” in delivering efficient energy for backup power generation and microgrids