Wärtsilä launches grid balancing technology

Company says it’s part of a portfolio of products designed to cost-effectively accelerate the energy transition

Wärtsilä launched grid balancing technology that is capable of ramping up to 10+ MW in two minutes designed to bridge utilities to a 100% renewable energy future.

The launch comes as the company has highlighted a striking need to scale up flexibility worldwide, with G20 countries requiring 3526 GW of flexible assets, in the form of energy storage and flexible gas technology, to enable their energy systems to run on 100% renewable electricity.

“Last month’s UN climate report gives a clear message for G20 leaders: to decarbonize at the lowest cost, high levels of renewable energy must be scaled up by 2030,” said Sushil Purohit, president, Wärtsilä Energy. “What we have learned from modeling over 145 countries and regions in our Atlas of 100% Renewable Energy is that power systems with high levels of renewables need a significant amount of flexibility, through energy storage and gas balancing technology, to achieve the transition to 100% renewable energy future.”

A flexible future Energy producers need to take a more holistic approach, according to Wärtsilä Energy’s president

The capacity needed to balance the G20’s switch to grids powered by intermittent renewables must come from two key technologies, the company said: 2594 GW of energy storage and 933 GW of flexible gas power capacity, capable of running on future fuels. Future fuels can be produced during periods when renewables produce more electricity than is needed.

Wärtsilä’s said its balancing technology is designed to accelerate the energy transition cost-effectively; renewables can be integrated seamlessly into different energy mixes as they become available, the company said.

Wärtsilä said its grid balancing technology is part of a portfolio of products designed to cost effectively accelerate the energy transition. The portfolio consists of power plants, energy storage and energy management systems. The first power plant solution in the portfolio is powered by the upgraded Wärtsilä 34SG Balancer engine, optimized for renewable baseload markets; a fast-starting gas engine capable of ramping up to 10.8 MW in two minutes to seamlessly integrate with renewables. The power plant solution is based on lean design, and it can be equipped with features such as unmanned standby, remote control capabilities, 24/7 data streaming and dynamic power management. Optimized performance and reliability is supported by Wärtsilä Lifecycle solutions.

Wärtsilä’s power plant gas engines can currently run on natural gas, biogas, synthetic methane or hydrogen blends. The company is actively developing the combustion process to allow the burning of 100% hydrogen and other future fuels. Wärtsilä has a long track record of successful fuel conversions for the global installed engine base.

Alongside the power plant solution, Wärtsilä offers its fully integrated GridSolv energy storage technology, designed for ease of deployment and sustainable energy optimization, and its GEMS Digital Energy Platform. GEMS dynamically optimizes energy systems through a broad range of applications, like frequency regulation, to create revenue streams and enhance grid/system resilience.

“Currently, the industry is in a challenging situation,” said Jukka Lehtonen, vice president for Technology & Product Management at Wärtsilä Energy. “Investments need to be made today even if visibility of the future is not fully clear. We have developed, in an agile manner, a solution based on existing, proven technology which is future-proof and flexible. The solution can be adapted to different operational profiles and running hours, along with evolving needs of the system. Using our solution, renewables can be integrated seamlessly into different energy mixes as they become available.”

According to Wärtsilä’s Atlas of 100% Renewable Energy modeling, the lowest-cost 100% renewable system would require 12,900 GW of electricity production capacity across the G20 by 2030, dominated by wind and solar. A significant degree of overcapacity is needed to account for the variability of wind and solar generation. Excess electricity can then be utilized to produce future fuels with Power-to-X technology. The modeling finds that balancing the intermittency of the renewable production with a combination of flexible gas and energy storage would be 38% cheaper for the G20, in comparison to relying on energy storage alone.

STAY CONNECTED



Receive the information you need when you need it through our world-leading magazines, newsletters and daily briefings.

Sign up

POWER SOURCING GUIDE

The trusted reference and buyer’s guide for 83 years

The original “desktop search engine,” guiding nearly 10,000 users in more than 90 countries it is the primary reference for specifications and details on all the components that go into engine systems.

Visit Now

CONNECT WITH THE TEAM
Becky Schultz Vice President of Content Tel: +1 480 408 9774 E-mail: [email protected]
Julian Buckley Editor Tel: +44 (0) 1892 784088 E-mail: [email protected]
Chad Elmore Managing Editor Tel: +1 262 754 4114 E-mail: [email protected]
Josh Kunz Power Progress Brand Manager Tel: +1 414 379 2672 E-mail: [email protected]
Roberta Prandi Power Progress International Brand Manager Tel: +39 334 6538183 E-mail: [email protected]
Simon Kelly Sales Manager Tel: +44 (0) 1892 786 223 E-mail: [email protected]
CONNECT WITH SOCIAL MEDIA